
MINTS – A General Framework
and Tool for Supporting
Test-suite Minimization

Hwa-You Hsu and Alessandro Orso

School of CS – College of Computing
Georgia Institute of Technology
http://www.cc.gatech.edu/~orso

Partially supported by: NSF, US Air Force, and IBM

Friday, May 22, 2009

http://www.cc.gatech.edu/~%7B
http://www.cc.gatech.edu/~%7B

Progam P0

Regression Testing

Test suite T

Friday, May 22, 2009

Progam P1Progam P0

Regression Testing

Test suite T

Friday, May 22, 2009

Progam P1Progam P0

Regression Testing

?Test suite T

Friday, May 22, 2009

Progam P1Progam P0

Regression Testing

Test suite T

Regression

test selection Test suite T'

Friday, May 22, 2009

Test-suite
augmentation Test suite Taug

Progam P1Progam P0

Regression Testing

Test suite T

Regression

test selection Test suite T'

Friday, May 22, 2009

Test-suite
augmentation

Progam P1Progam P0

Regression Testing

Test suite T

Regression

test selection Test suite T' Test suite Taug

Progam P2Progam P3Progam P4Progam P5Progam P6Progam P7Progam P8Progam Pn
Friday, May 22, 2009

Test Suite Minimization

Test suite Taug

Friday, May 22, 2009

Test Suite Minimization

Test suite Taug

Redundant

test cases

Minimized

test suite
Test-suite minimization

Friday, May 22, 2009

Test Suite Minimization

Test suite Taug

Redundant

test cases

Minimized

test suite
Test-suite minimization

Criteria:
• coverage
• fault-detection ability
• time
• cost
• ...

Friday, May 22, 2009

A Simple Example

Test suite Taug stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Friday, May 22, 2009

A Simple Example

Test suite Taug stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Minimize test suite while maintaining the same level of coverage

Friday, May 22, 2009

A Simple Example

Test suite Taug stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Minimize test suite while maintaining the same level of coverage

Friday, May 22, 2009

A More Realistic Example

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}

Criteria of interest:
C1 – maintain coverage

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}
3. Test-related data: cost and fault-detection data

Criteria of interest:
C1 – maintain coverage

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Time to run 22 4 16 2

Setup effort 3 0 11 9

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}
3. Test-related data: cost and fault-detection data

Criteria of interest:
C1 – maintain coverage

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Time to run 22 4 16 2

Setup effort 3 0 11 9

Fault detection
ability

8 4 10 2

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}
3. Test-related data: cost and fault-detection data

Criteria of interest:
C1 – maintain coverage

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Time to run 22 4 16 2

Setup effort 3 0 11 9

Fault detection
ability

8 4 10 2

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}
3. Test-related data: cost and fault-detection data

Criteria of interest:
C1 – maintain coverage
C2 – minimize time to run

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Time to run 22 4 16 2

Setup effort 3 0 11 9

Fault detection
ability

8 4 10 2

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}
3. Test-related data: cost and fault-detection data

Criteria of interest:
C1 – maintain coverage
C2 – minimize time to run
C3 – minimize setup effort

Friday, May 22, 2009

A More Realistic Example

stmt1 1 1

stmt2 1 1

stmt3 1 1

t1 t2 t3 t4

Time to run 22 4 16 2

Setup effort 3 0 11 9

Fault detection
ability

8 4 10 2

Relevant parameters:
1. Test suite to minimize: T = {t1, t2, t3, t4}
2. Requirements to cover: R = {stmt1, stmt2, stmt3}
3. Test-related data: cost and fault-detection data

Criteria of interest:
C1 – maintain coverage
C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

Friday, May 22, 2009

State of the Art
Several approaches in the literature (e.g.,
[HGS93],[H99],[MB03],[BMK04],[TG05])

Two main limitations:

Single criterion
(typically, coverage)

Approximated
(problem is NP-complete)

Only exception is [BMK04]: two criteria, but
still limited in terms of expressiveness

Friday, May 22, 2009

Our Contribution
MINTS – novel technique (and freely-available
tool) for test-suite minimization that:

Lets testers specify a wide range of multi-
criteria test-suite minimization problems

Automatically encodes problems in binary
ILP form

Leverages different ILP solvers to find
optimal solutions in a “reasonable” time

Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Overview of MINTS
Test-related data

Test suite Coverage

data

Cost

data

Fault detection

data

Minimization

criteria

Criterion #1

Criterion #2

Criterion #n

MINTS

tool

Solver n

Minimization

policy

Minimized

Test suite

M
i
n
i
m
i
z
a
t
i
o
n

p
r
o
b
l
e
m

(
s
u
i
t
a
b
l
y

e
n
c
o
d
e
d
)

S
o
l
u
t
i
o
n

(
o
r

t
i
m
e
o
u
t
)

Solver 1

Testing team

Friday, May 22, 2009

Overview of MINTS
Test-related data

Test suite Coverage

data

Cost

data

Fault detection

data

Minimization

criteria

Criterion #1

Criterion #2

Criterion #n

MINTS

tool

Solver n

Minimization

policy

Minimized

Test suite

M
i
n
i
m
i
z
a
t
i
o
n

p
r
o
b
l
e
m

(
s
u
i
t
a
b
l
y

e
n
c
o
d
e
d
)

S
o
l
u
t
i
o
n

(
o
r

t
i
m
e
o
u
t
)

Solver 1

Testing team

Friday, May 22, 2009

Overview of MINTS
Test-related data

Test suite Coverage

data

Cost

data

Fault detection

data

Minimization

criteria

Criterion #1

Criterion #2

Criterion #n

MINTS

tool

Solver n

Minimization

policy

Minimized

Test suite

M
i
n
i
m
i
z
a
t
i
o
n

p
r
o
b
l
e
m

(
s
u
i
t
a
b
l
y

e
n
c
o
d
e
d
)

S
o
l
u
t
i
o
n

(
o
r

t
i
m
e
o
u
t
)

Solver 1

Testing team

Friday, May 22, 2009

Overview of MINTS
Test-related data

Test suite Coverage

data

Cost

data

Fault detection

data

Minimization

criteria

Criterion #1

Criterion #2

Criterion #n

MINTS

tool

Solver n

Minimization

policy

Minimized

Test suite

M
i
n
i
m
i
z
a
t
i
o
n

p
r
o
b
l
e
m

(
s
u
i
t
a
b
l
y

e
n
c
o
d
e
d
)

S
o
l
u
t
i
o
n

(
o
r

t
i
m
e
o
u
t
)

Solver 1

Testing team

Friday, May 22, 2009

Minimization Criteria
Absolute criteria

Introduce a constraint

Example: C1 – Maintain statement coverage

Relative criteria

Introduce an objective

Example: C2 – Minimize time to run

Note: the same set of data can be used for
either type of criteria

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Hybrid

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Testers associate a weight to each objective

Weights indicate relative importance

Example: very limited man power:
C2 – minimize time to run ➡ 0.1
C3 – minimize setup effort ➡ 0.8
C4 – maximize fault detection ➡ 0.1

Prioritized

Hybrid

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Testers specify a priority order for each objective

Priorities indicate order of processing

Example: C3 ➡ 1, C2 ➡ 2, C4 ➡ 3:
S1 ⊆ 2T = min setup effort
S2 ⊆ S1 = min testing time
S3 ⊆ S2 = max fault detection

Hybrid
C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Testers specify a priority order for each objective

Priorities indicate order of processing

Example: C3 ➡ 1, C2 ➡ 2, C4 ➡ 3:
S1 ⊆ 2T = min setup effort
S2 ⊆ S1 = min testing time
S3 ⊆ S2 = max fault detection

Hybrid
C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

2T

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Testers specify a priority order for each objective

Priorities indicate order of processing

Example: C3 ➡ 1, C2 ➡ 2, C4 ➡ 3:
S1 ⊆ 2T = min setup effort
S2 ⊆ S1 = min testing time
S3 ⊆ S2 = max fault detection

Hybrid
C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

2T
S1

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Testers specify a priority order for each objective

Priorities indicate order of processing

Example: C3 ➡ 1, C2 ➡ 2, C4 ➡ 3:
S1 ⊆ 2T = min setup effort
S2 ⊆ S1 = min testing time
S3 ⊆ S2 = max fault detection

Hybrid
C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

2T
S1

S2

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Testers specify a priority order for each objective

Priorities indicate order of processing

Example: C3 ➡ 1, C2 ➡ 2, C4 ➡ 3:
S1 ⊆ 2T = min setup effort
S2 ⊆ S1 = min testing time
S3 ⊆ S2 = max fault detection

Hybrid
C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

2T
S1

S2
S3

Friday, May 22, 2009

Minimization Policy
Defines how to combine different objectives

Weighted

Prioritized

Hybrid

Testers cluster objectives into groups and

assign weights to objects within group

assign priorities to groups

Friday, May 22, 2009

Overview of MINTS
Test-related data

Test suite Coverage

data

Cost

data

Fault detection

data

Minimization

criteria

Criterion #1

Criterion #2

Criterion #n

MINTS

tool

Solver n

Minimization

policy

Minimized

Test suite

M
i
n
i
m
i
z
a
t
i
o
n

p
r
o
b
l
e
m

(
s
u
i
t
a
b
l
y

e
n
c
o
d
e
d
)

S
o
l
u
t
i
o
n

(
o
r

t
i
m
e
o
u
t
)

Solver 1

Testing team

Friday, May 22, 2009

Overview of MINTS
Test-related data

Test suite Coverage

data

Cost

data

Fault detection

data

Minimization

criteria

Criterion #1

Criterion #2

Criterion #n

MINTS

tool

Solver n

Minimization

policy

Minimized

Test suite

M
i
n
i
m
i
z
a
t
i
o
n

p
r
o
b
l
e
m

(
s
u
i
t
a
b
l
y

e
n
c
o
d
e
d
)

S
o
l
u
t
i
o
n

(
o
r

t
i
m
e
o
u
t
)

Solver 1

Testing team

Friday, May 22, 2009

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

For example:

Criterion #1: ∑j=1..4 d1,j oj = o1 + o3 ≥ 1
(maintain ∑j=1..4 d2,j oj = o1 + o2 ≥ 1
 coverage) ∑j=1..4 d3,j oj = o3 + o4 ≥ 1

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

Relative criteria (type x): min/max ∑j=1..|T| norm(dx,j)oj
 (∑j=1..|T| norm(d,j) = 1)

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

Relative criteria (type x): min/max ∑j=1..|T| norm(dx,j)oj
 (∑j=1..|T| norm(d,j) = 1)

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >For example:

Criterion #2 (minimize time to run):
min ∑j=1..4 norm(d3,j)oj = .5o1 + .1o2 + .36o3 + .04o4

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

Relative criteria (type x): min/max ∑j=1..|T| norm(dx,j)oj
 (∑j=1..|T| norm(d,j) = 1)

Minimization policies

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

Relative criteria (type x): min/max ∑j=1..|T| norm(dx,j)oj
 (∑j=1..|T| norm(d,j) = 1)

Minimization policies

Weighted: {αj}, 1≤j≤#relative criteria

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >

Friday, May 22, 2009

Minimized test suite MT={oi}, 1≤i≤|T|, oi=1 iff ti∈MT

Test-related data (types 1..n) dall={di,j}, 1≤i≤|n|,1≤j≤|T|

Test-related data (type x) dx={dx,j}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..|T| dx,joj ⊕ const

Relative criteria (type x): min/max ∑j=1..|T| norm(dx,j)oj
 (∑j=1..|T| norm(d,j) = 1)

Minimization policies

Weighted: {αj}, 1≤j≤#relative criteria

Prioritized: criterion ⇒ integer

Multi-criteria minimization
as a binary ILP problem:

Encoding

t1 t2 t3 t4
stmt1 1 1
stmt2 1 1
stmt3 1 1

Time to run 22 4 16 2
Setup effort 3 0 11 9
F. detection 8 4 10 2

⊕ = <, <=, =, >=, or >

Friday, May 22, 2009

Multi-criteria minimization
as a binary ILP problem:

Weighted policy
Given

n relative criteria involving test data dx1, ..., dxn

m absolute criteria involving test data dy1, ..., dym

A weighted policy with weights α1, ..., αn

Friday, May 22, 2009

MINTS encode the minimization problem as

minimize
∑i=1..n αi ∑j=1..|T| norm(dxi,j)oj

under the constraints
∑j=1..|T| dy1,j oj ⊕ const1
...
∑j=1..|T| dy1,j oj ⊕ const1

Multi-criteria minimization
as a binary ILP problem:

Weighted policy
Given

n relative criteria involving test data dx1, ..., dxn

m absolute criteria involving test data dy1, ..., dym

A weighted policy with weights α1, ..., αn

Friday, May 22, 2009

MINTS encode the minimization problem as

minimize
∑i=1..n αi ∑j=1..|T| norm(dxi,j)oj

under the constraints
∑j=1..|T| dy1,j oj ⊕ const1
...
∑j=1..|T| dy1,j oj ⊕ const1

Multi-criteria minimization
as a binary ILP problem:

Weighted policy
Given

n relative criteria involving test data dx1, ..., dxn

m absolute criteria involving test data dy1, ..., dym

A weighted policy with weights α1, ..., αn

ILP

Solver

Friday, May 22, 2009

MINTS encode the minimization problem as

minimize
∑i=1..n αi ∑j=1..|T| norm(dxi,j)oj

under the constraints
∑j=1..|T| dy1,j oj ⊕ const1
...
∑j=1..|T| dy1,j oj ⊕ const1

Multi-criteria minimization
as a binary ILP problem:

Weighted policy
Given

n relative criteria involving test data dx1, ..., dxn

m absolute criteria involving test data dy1, ..., dym

A weighted policy with weights α1, ..., αn

ILP

Solver
MT={oi}

Friday, May 22, 2009

MINTS encode the minimization problem as

minimize
∑i=1..n αi ∑j=1..|T| norm(dxi,j)oj

under the constraints
∑j=1..|T| dy1,j oj ⊕ const1
...
∑j=1..|T| dy1,j oj ⊕ const1

Multi-criteria minimization
as a binary ILP problem:

Weighted policy
Given

n relative criteria involving test data dx1, ..., dxn

m absolute criteria involving test data dy1, ..., dym

A weighted policy with weights α1, ..., αn

ILP

Solver
MT={oi}

Minimize
0.1(.5o1+.1o2+.36o3+.04o4) + 0.8(.13o1+.48o3+.39o4) - 0.1(.3o1+.
17o2+.42o3+.08o4)

Under the constraints
o1 + o3 ≥ 1, o1 + o2 ≥ 1, o3 + o4 ≥ 1

⇒ MT = {0,1,1,0}
Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Empirical Evaluation
Goal: assess usefulness and
practicality of the approach

RQ1: How often can MINTS find an optimal
solution “quickly”?

RQ2: How does MINTS compare with a
heuristic approach?

RQ3: How does the use of a specific
solver affect MINTS’s performance?

Friday, May 22, 2009

Empirical Evaluation
Goal: assess usefulness and
practicality of the approach

RQ1: How often can MINTS find an optimal
solution “quickly”?

RQ2: How does MINTS compare with a
heuristic approach?

RQ3: How does the use of a specific
solver affect MINTS’s performance?

Friday, May 22, 2009

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

Subjects:

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

Subjects:

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

Subjects:

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

Subjects:

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

Subjects:

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

Subjects:

Solvers:
Four SAT-based pseudo-Boolean and two pure ILP solvers

Experimental Subjects
and Solvers Considered

Subject LOC COV #Test Cases #Versions
tcas 173 72 1608 5

schedule2 307 146 2700 5
tot_info 406 136 1052 5
schedule 412 166 2650 5
replace 562 263 5542 5

print_tokens 563 194 4130 5
print_tokens2 570 197 4115 5

flex 12,421 567 548 5
LogicBlox 570,595 29204 393 5
Eclipse 1,892,226 35903 3621 5

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(setup)

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(setup)
Test-related data

Code coverage (gcov, cobertura)
Running time (UNIX’s time utility)
Fault-detection ability (#faults detected in previous
version)

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(setup)
Test-related data

Code coverage (gcov, cobertura)
Running time (UNIX’s time utility)
Fault-detection ability (#faults detected in previous
version)

Minimization criteria
One absolute: maintain statement coverage
Three relatives: min size test suite, min execution
time, max fault-detection capability

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(setup)
Test-related data

Code coverage (gcov, cobertura)
Running time (UNIX’s time utility)
Fault-detection ability (#faults detected in previous
version)

Minimization criteria
One absolute: maintain statement coverage
Three relatives: min size test suite, min execution
time, max fault-detection capability

Minimization policies
Seven weighted: same weight; 0.6, 0.3, 0.1 (all
combinations)
One prioritized: (1) min size test suite, (2) min
execution time, (3) max fault-detection capability

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(setup)
Test-related data

Code coverage (gcov, cobertura)
Running time (UNIX’s time utility)
Fault-detection ability (#faults detected in previous
version)

Minimization criteria
One absolute: maintain statement coverage
Three relatives: min size test suite, min execution
time, max fault-detection capability

Minimization policies
Seven weighted: same weight; 0.6, 0.3, 0.1 (all
combinations)
One prioritized: (1) min size test suite, (2) min
execution time, (3) max fault-detection capability

Overall, 400 minimization problems covering a wide spectrum

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(Process and results)
MINTS encoded each problem, submitted it to all solvers, and
measured the time required to get the first solution

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(Process and results)

tcas tot_info LogicBlox schedule2 schedule print_tokens print_tokens2 replace flex Eclipse

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

Minimization Problems (by Subject)

T
im

e
 (

s
e
c
)

Ordered by complexity indicator – size of the subject x # test cases

Time (sec)

tcas tot_info LogicBlox schedule2 schedule print_tok print_tok2 replace flex Eclipse

MINTS encoded each problem, submitted it to all solvers, and
measured the time required to get the first solution

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(Process and results)

tcas tot_info LogicBlox schedule2 schedule print_tokens print_tokens2 replace flex Eclipse

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

Minimization Problems (by Subject)

T
im

e
 (

s
e
c
)

Ordered by complexity indicator – size of the subject x # test cases

Time (sec)

tcas tot_info LogicBlox schedule2 schedule print_tok print_tok2 replace flex Eclipse

MINTS always found an optimal solution
All solutions found within 40 sec
Less then 10 seconds for the majority of the most
complex minimization problems
In most cases, less than two sec

MINTS encoded each problem, submitted it to all solvers, and
measured the time required to get the first solution

Friday, May 22, 2009

RQ1: How often can MINTS find
an optimal solution quickly?

(Process and results)

tcas tot_info LogicBlox schedule2 schedule print_tokens print_tokens2 replace flex Eclipse

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

Minimization Problems (by Subject)

T
im

e
 (

s
e
c
)

Ordered by complexity indicator – size of the subject x # test cases

Time (sec)

tcas tot_info LogicBlox schedule2 schedule print_tok print_tok2 replace flex Eclipse

MINTS always found an optimal solution
All solutions found within 40 sec
Less then 10 seconds for the majority of the most
complex minimization problems
In most cases, less than two sec

Clear correlation between complexity and time required
Almost linear; promising wrt scalability

MINTS encoded each problem, submitted it to all solvers, and
measured the time required to get the first solution

Friday, May 22, 2009

RQ2: How does MINTS compare
with a heuristic approach?

Friday, May 22, 2009

Process
1. Single criterion: maintain statement coverage
2. Implemented HGS [HGS93] – well known, simple
3. Measured

1. time to solve minimization problems
2. size of resulting test suite

RQ2: How does MINTS compare
with a heuristic approach?

Friday, May 22, 2009

Process
1. Single criterion: maintain statement coverage
2. Implemented HGS [HGS93] – well known, simple
3. Measured

1. time to solve minimization problems
2. size of resulting test suite

Results
Both found solutions to all problems in a few
seconds
MINTS sometimes faster than HGS
Minimized test suites of the same size for the
Siemens programs and flex, of similar size for
LogicBlox, and fairly different for Eclipse

RQ2: How does MINTS compare
with a heuristic approach?

Friday, May 22, 2009

Process
1. Single criterion: maintain statement coverage
2. Implemented HGS [HGS93] – well known, simple
3. Measured

1. time to solve minimization problems
2. size of resulting test suite

Results
Both found solutions to all problems in a few
seconds
MINTS sometimes faster than HGS
Minimized test suites of the same size for the
Siemens programs and flex, of similar size for
LogicBlox, and fairly different for Eclipse

Eclipse version Original T’s size HGS MINTS Difference

3.0.1 2460 656 418 238 (36%)

3.0.2 2467 651 423 228 (35%)

3.1 3621 851 553 298 (35%)

3.1.1 3681 833 532 301 (36%)

3.1.2 3681 656 406 250 (38%)

RQ2: How does MINTS compare
with a heuristic approach?

Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Introduction

Our technique

Empirical evaluation

Conclusion and future work

Outline

Friday, May 22, 2009

Conclusion and
Future Work

Friday, May 22, 2009

Conclusion and
Future Work

Summary
MINTS is a technique and tool for test suite
minimization that

Allows for specifying a wide range of multi-
criteria minimization problems
Computes (when successful) optimal solutions

Empirical results show usefulness and
applicability of the approach

Friday, May 22, 2009

Conclusion and
Future Work

Summary
MINTS is a technique and tool for test suite
minimization that

Allows for specifying a wide range of multi-
criteria minimization problems
Computes (when successful) optimal solutions

Empirical results show usefulness and
applicability of the approach

Future work
Additional experimentation
Study solvers’ performance to go beyond the
black box
Extension of MINTS to include prioritization

Friday, May 22, 2009

Thank You!

Friday, May 22, 2009

