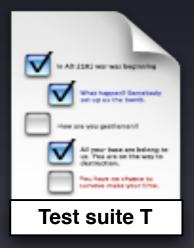
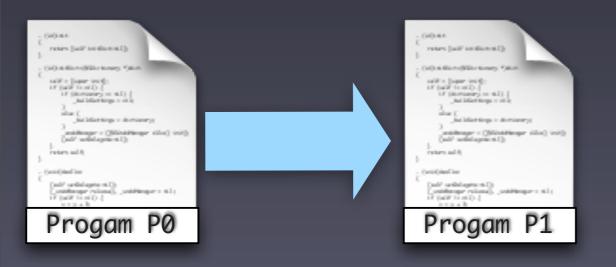
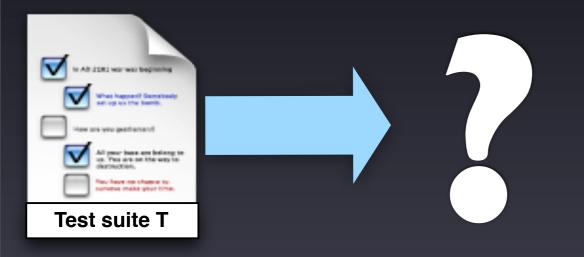
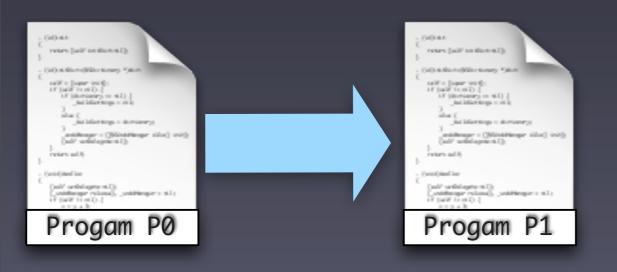


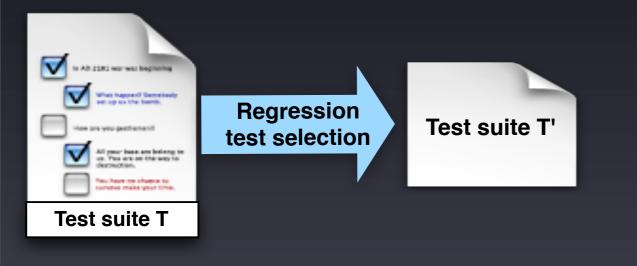
MÍNTS – A General Framework and Tool for Supporting Test-suite Minimization

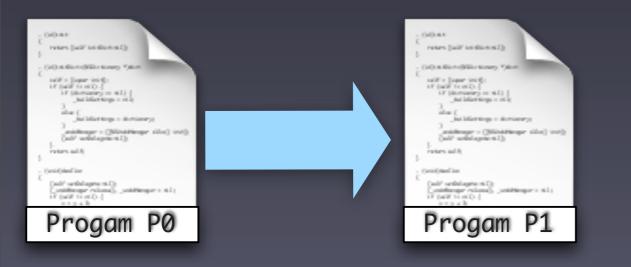

Hwa-You Hsu and Alessandro Orso

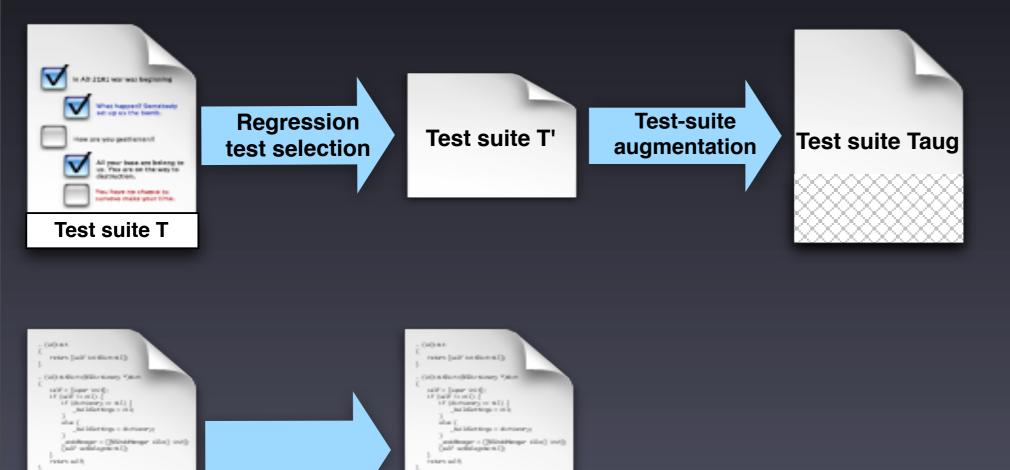

School of CS - College of Computing
Georgia Institute of Technology
http://www.cc.gatech.edu/~orso

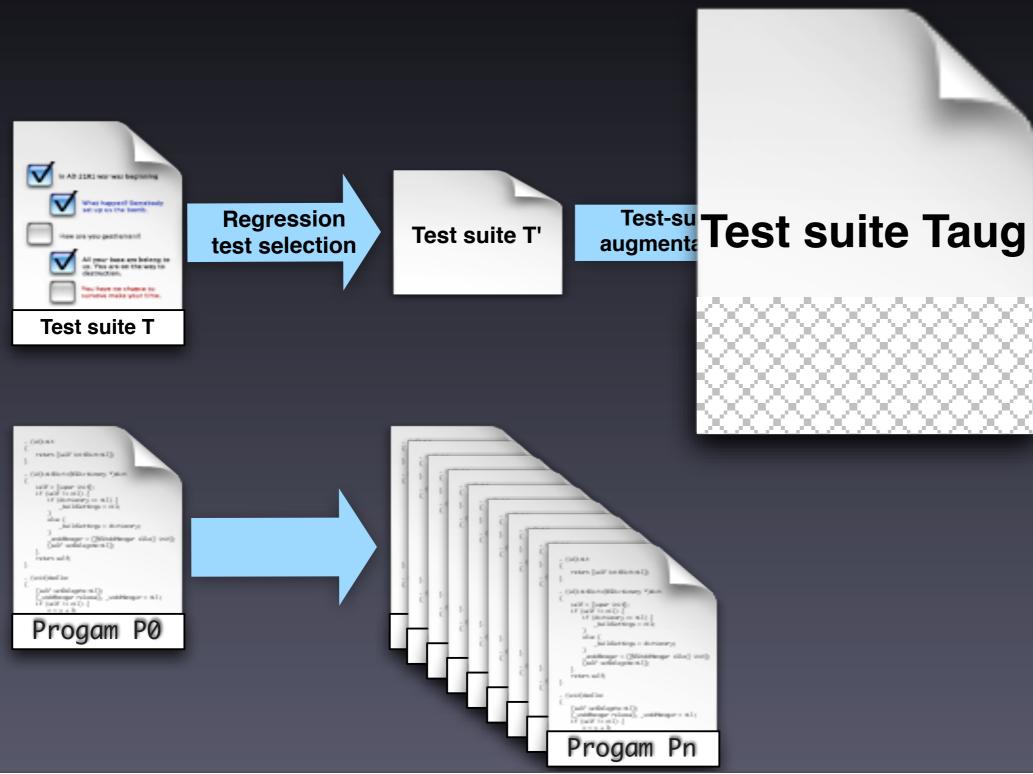

Partially supported by: NSF, US Air Force, and IBM









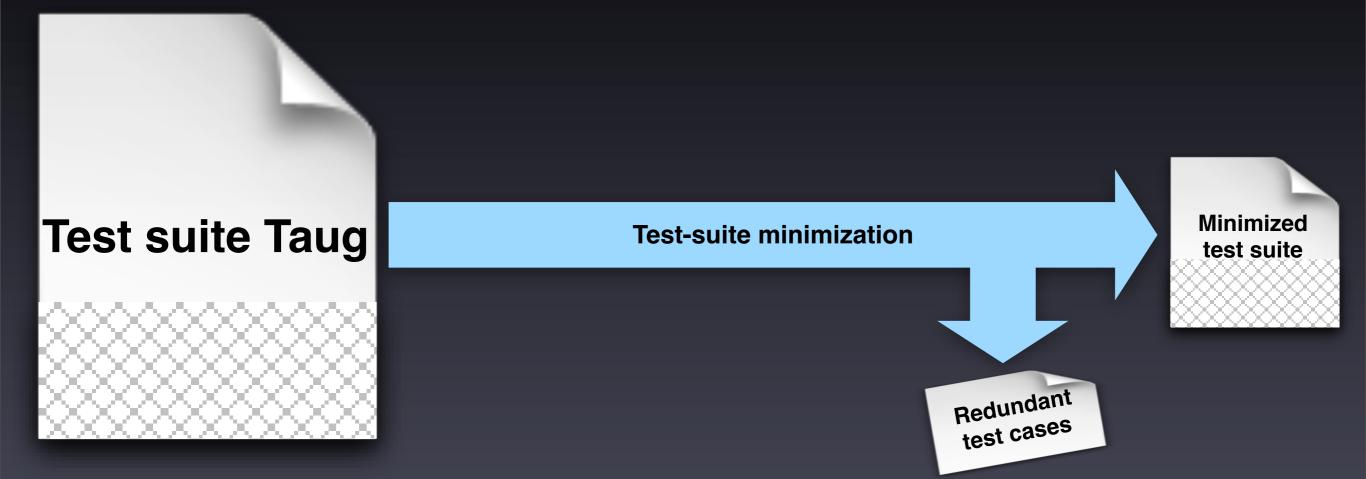


(add ardiologie 41) (addinoge volume), Joshkinger 141) (Fladif to 41)-1

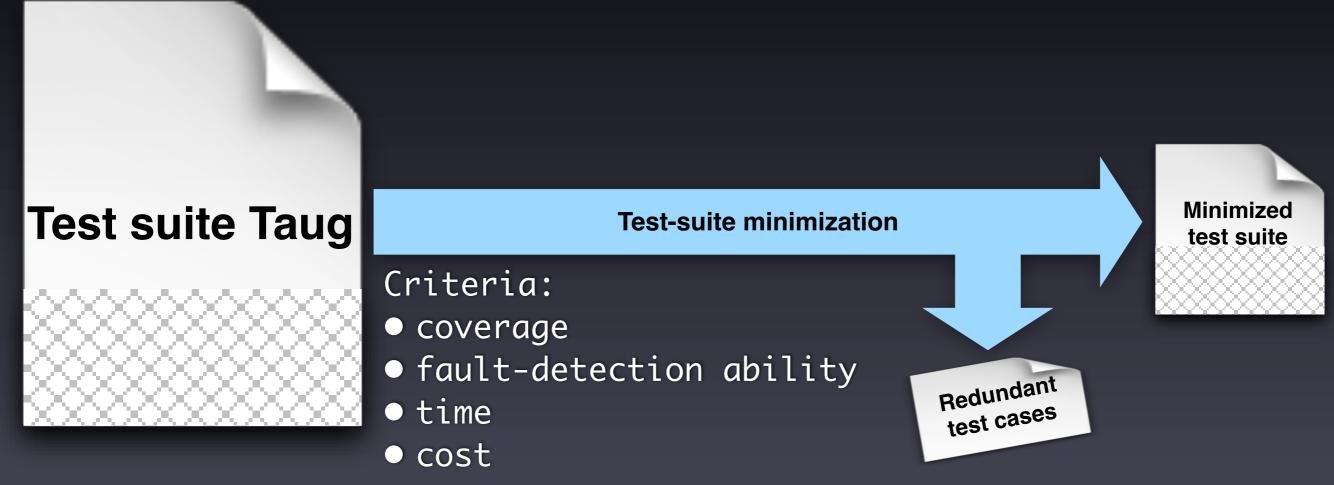
Progam P1

Colored Tax

Progam P0



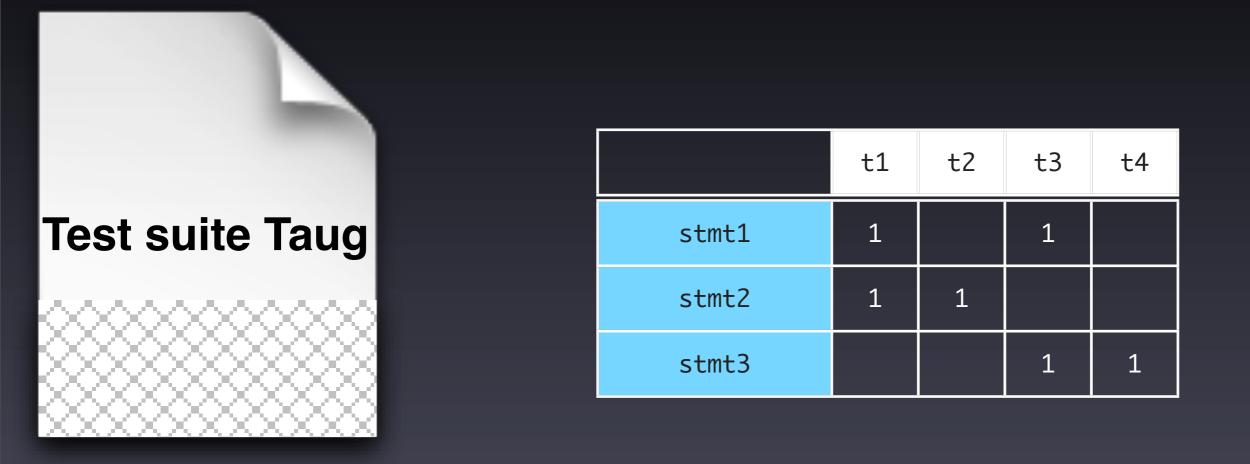
Test Suite Minimization


Test suite Taug

Test Suite Minimization

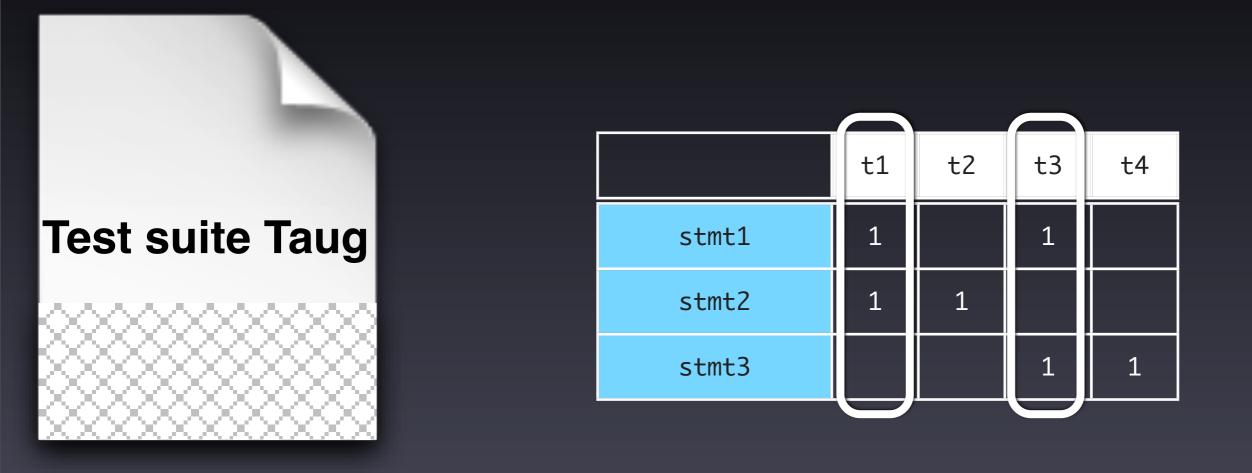
Test Suite Minimization

• . . .


A Simple Example

Test suite Taug

$\sim\sim\sim$		$\sim \sim \sim \sim$
∞		$\infty \infty \infty \infty$
$1 \times 1 \times 1$		XXXXX
кхх	20000	
LXXX		
КXХ	.XXXX	. X X X X /


	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1

A Simple Example

Minimize test suite while maintaining the same level of coverage

A Simple Example

Minimize test suite while maintaining the same level of coverage

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: R = {stmt1, stmt2, stmt3}

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1

Criteria of interest: C1 – maintain coverage

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: R = {stmt1, stmt2, stmt3}
- 3. Test-related data: cost and fault-detection data

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1

Criteria of interest:

C1 – maintain coverage

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: $R = \{stmt1, stmt2, stmt3\}$
- 3. Test-related data: cost and fault-detection data

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9

Criteria of interest:

C1 – maintain coverage

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: $R = \{stmt1, stmt2, stmt3\}$
- 3. Test-related data: cost and fault-detection data

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
Fault detection ability	8	4	10	2

Criteria of interest:

C1 – maintain coverage

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: R = {stmt1, stmt2, stmt3}
- 3. Test-related data: cost and fault-detection data

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
Fault detection ability	8	4	10	2

Criteria of interest:

- C1 maintain coverage
- C2 minimize time to run

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: R = {stmt1, stmt2, stmt3}
- 3. Test-related data: cost and fault-detection data

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
Fault detection ability	8	4	10	2

Criteria of interest:

- C1 maintain coverage
- C2 minimize time to run
- C3 minimize setup effort

Relevant parameters:

- 1. Test suite to minimize: $T = \{t1, t2, t3, t4\}$
- 2. Requirements to cover: R = {stmt1, stmt2, stmt3}
- 3. Test-related data: cost and fault-detection data

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
Fault detection ability	8	4	10	2

Criteria of interest:

- C1 maintain coverage
- C2 minimize time to run
- C3 minimize setup effort
- C4 maximize fault detection

State of the Art

Several approaches in the literature (e.g., [HGS93],[H99],[MB03],[BMK04],[TG05])

Two main limitations:

- Single criterion
 (typically, coverage)
- Approximated
 (problem is NP-complete)

Only exception is [BMK04]: two criteria, but still limited in terms of expressiveness

Our Contribution

MINTS - novel technique (and freely-available tool) for test-suite minimization that:

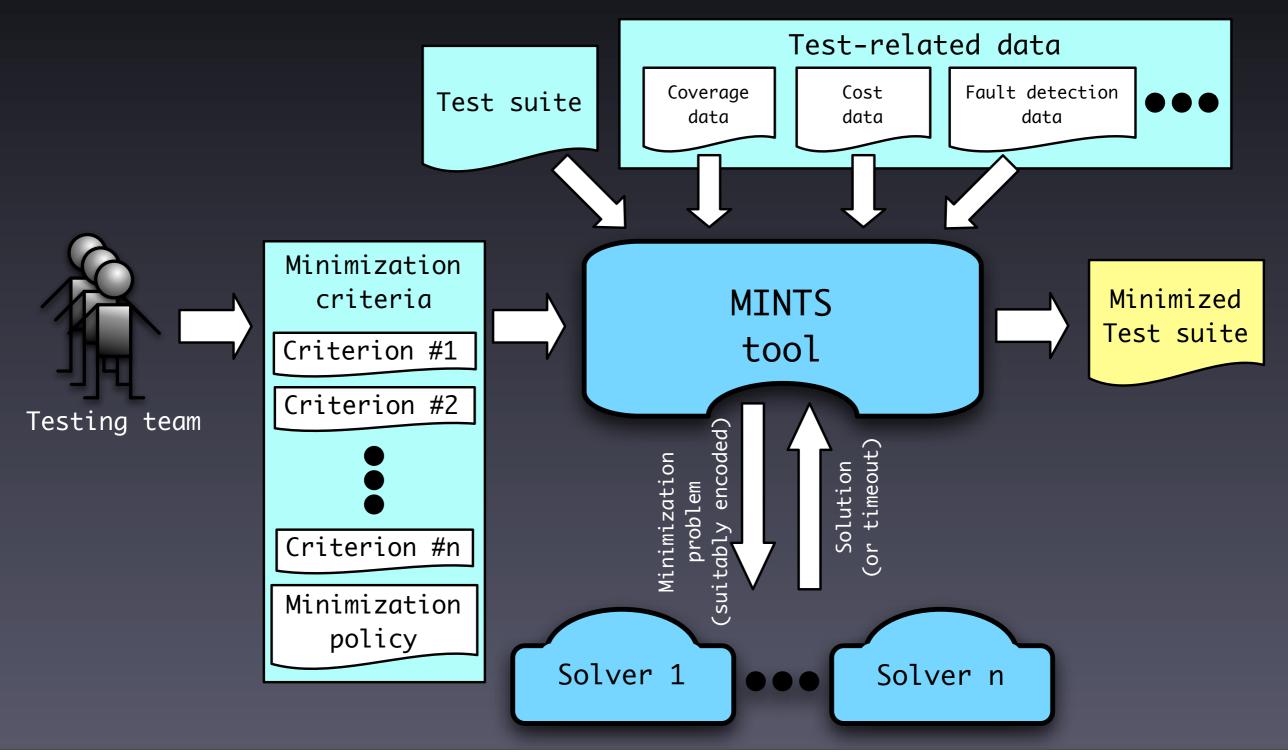
- Lets testers specify a wide range of multicriteria test-suite minimization problems
- Automatically encodes problems in binary ILP form
- Leverages different ILP solvers to find optimal solutions in a "reasonable" time

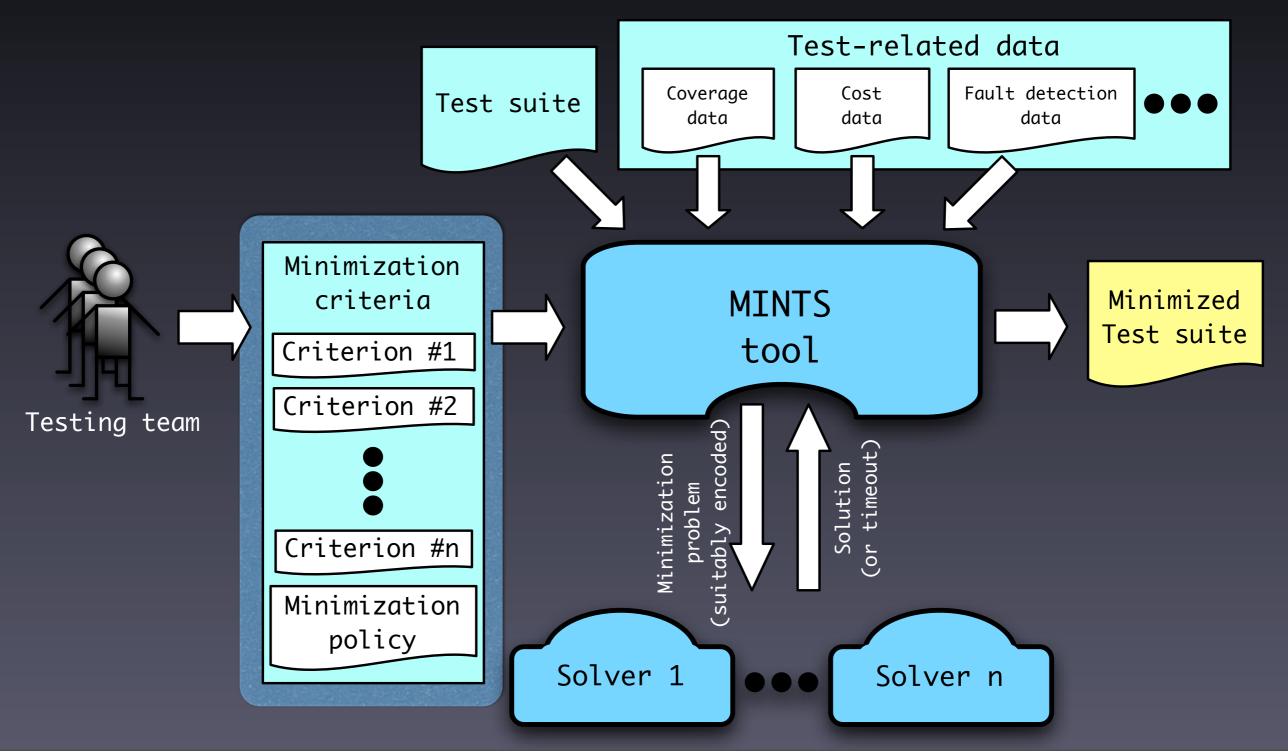
Outline

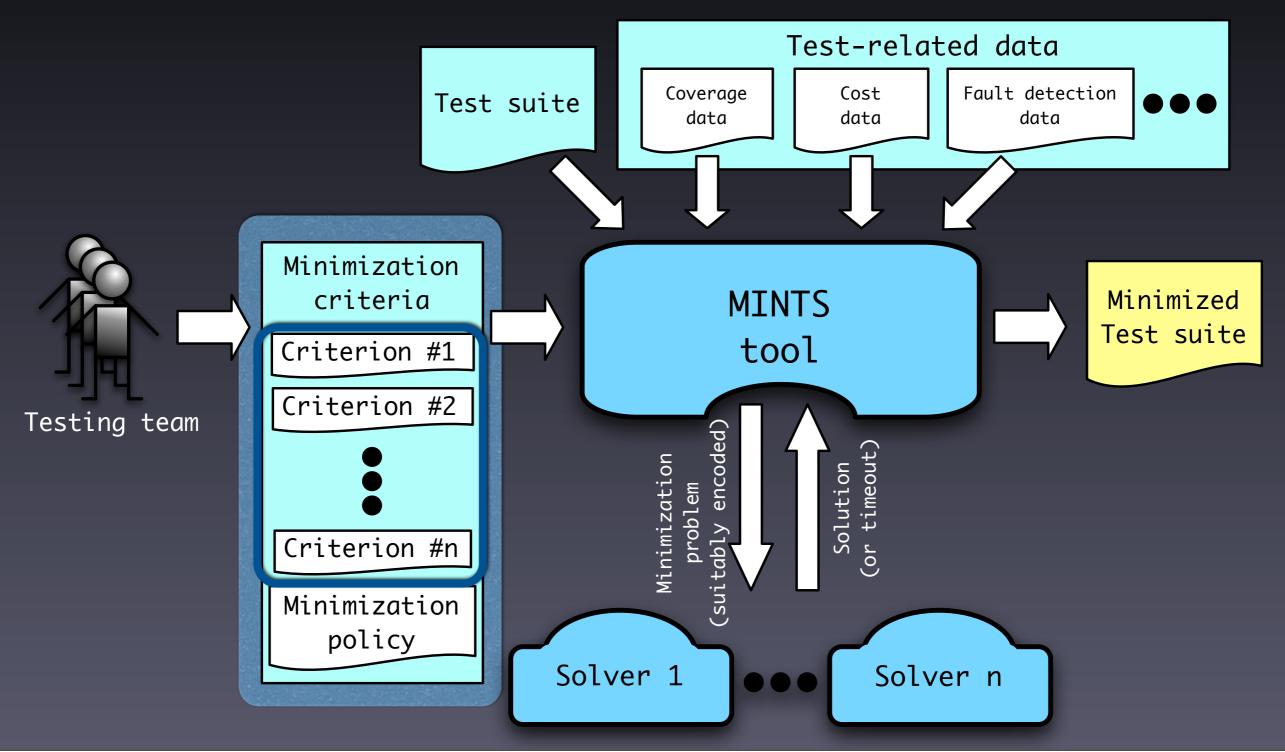
Introduction Our technique Empirical evaluation Conclusion and future work

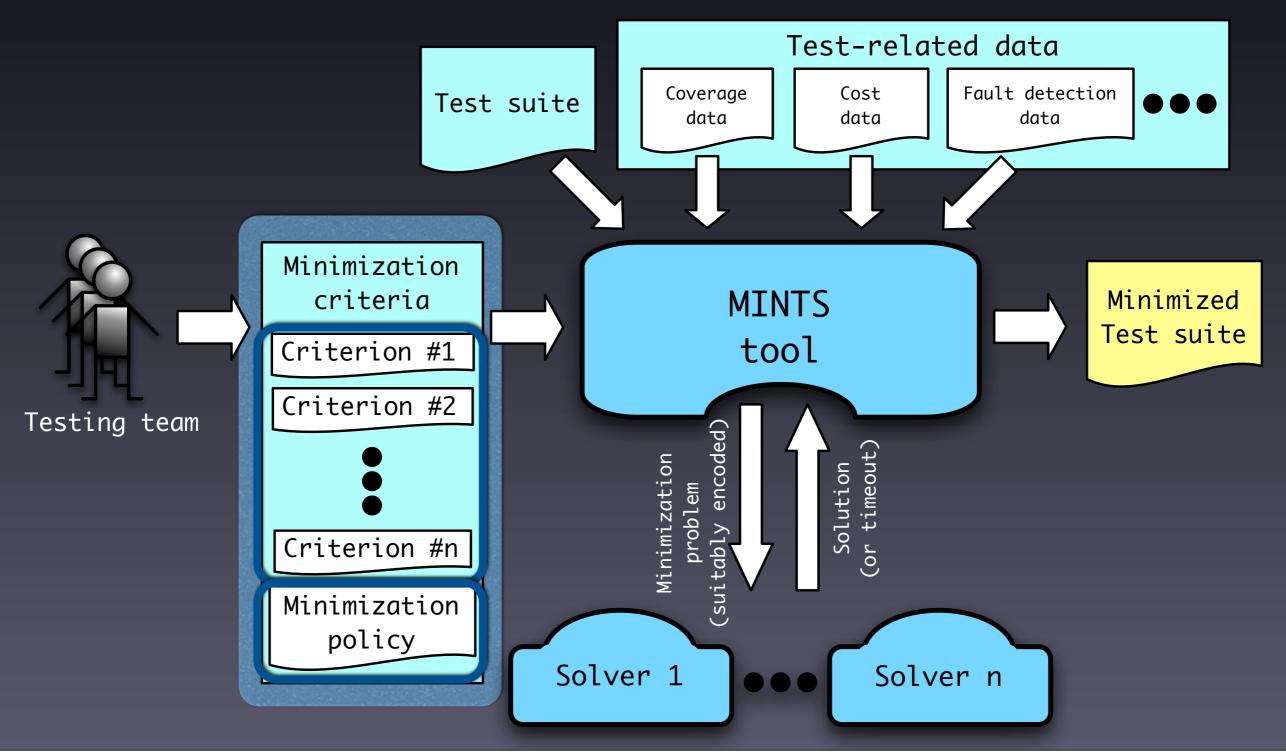
Outline

SIntroduction


Sour technique Sour technique


Outline


SIntroduction


øOur technique

Sempirical evaluation
Sempirical evaluation
Sempirical evaluation

Minimization Criteria

Absolute criteria

- Introduce a <u>constraint</u>
- Example: C1 Maintain statement coverage
- Relative criteria
 - Introduce an <u>objective</u>
 - Example: C2 Minimize time to run
- Note: the same set of data can be used for either type of criteria

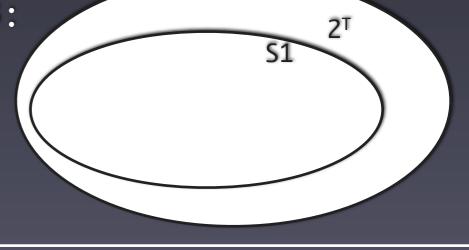
- Defines how to combine different objectives
- Weighted
- Prioritized
- Hybrid

- Defines how to combine different objectives
- Weighted
 - Testers associate a weight to each objective
 - Weights indicate relative importance
 - Example: very limited man power: C2 – minimize time to run = 0.1 C3 – minimize setup effort = 0.8 C4 – maximize fault detection = 0.1
- Prioritized
- Hybrid

- Defines how to combine different objectives
- Weighted
- Prioritized
 - Testers specify a priority order for each objective
 - Priorities indicate order of processing
 - Stample: C3 \Rightarrow 1, C2 \Rightarrow 2, C4 \Rightarrow 3: S1 \subseteq 2^T = min setup effort S2 \subseteq S1 = min testing time S3 \subseteq S2 = max fault detection

Hybrid

C2 – minimize time to run C3 – minimize setup effort C4 – maximize fault detection

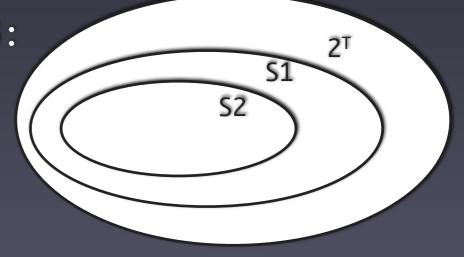

- Defines how to combine different objectives
- Weighted
- Prioritized
 - Testers specify a priority order for each objective
 - Priorities indicate order of processing
 - Stample: C3 \Rightarrow 1, C2 \Rightarrow 2, C4 \Rightarrow 3: S1 \subseteq 2^T = min setup effort S2 \subseteq S1 = min testing time S3 \subseteq S2 = max fault detection

🗳 Hybrid

2T

- Defines how to combine different objectives
- Weighted
- Prioritized
 - Testers specify a priority order for each objective
 - Priorities indicate order of processing
 - String S

Hybrid



C2 – minimize time to run C3 – minimize setup effort C4 – maximize fault detection

Minimization Policy

- Defines how to combine different objectives
- Weighted
- Prioritized
 - Testers specify a priority order for each objective
 - Priorities indicate order of processing
 - Stample: C3 \Rightarrow 1, C2 \Rightarrow 2, C4 \Rightarrow 3: S1 \subseteq 2^T = min setup effort S2 \subseteq S1 = min testing time S3 \subseteq S2 = max fault detection

Hybrid

C2 – minimize time to run
C3 – minimize setup effort
C4 – maximize fault detection

Minimization Policy

- Defines how to combine different objectives
- Weighted
- Prioritized
 - Testers specify a priority order for each objective

2T

S1

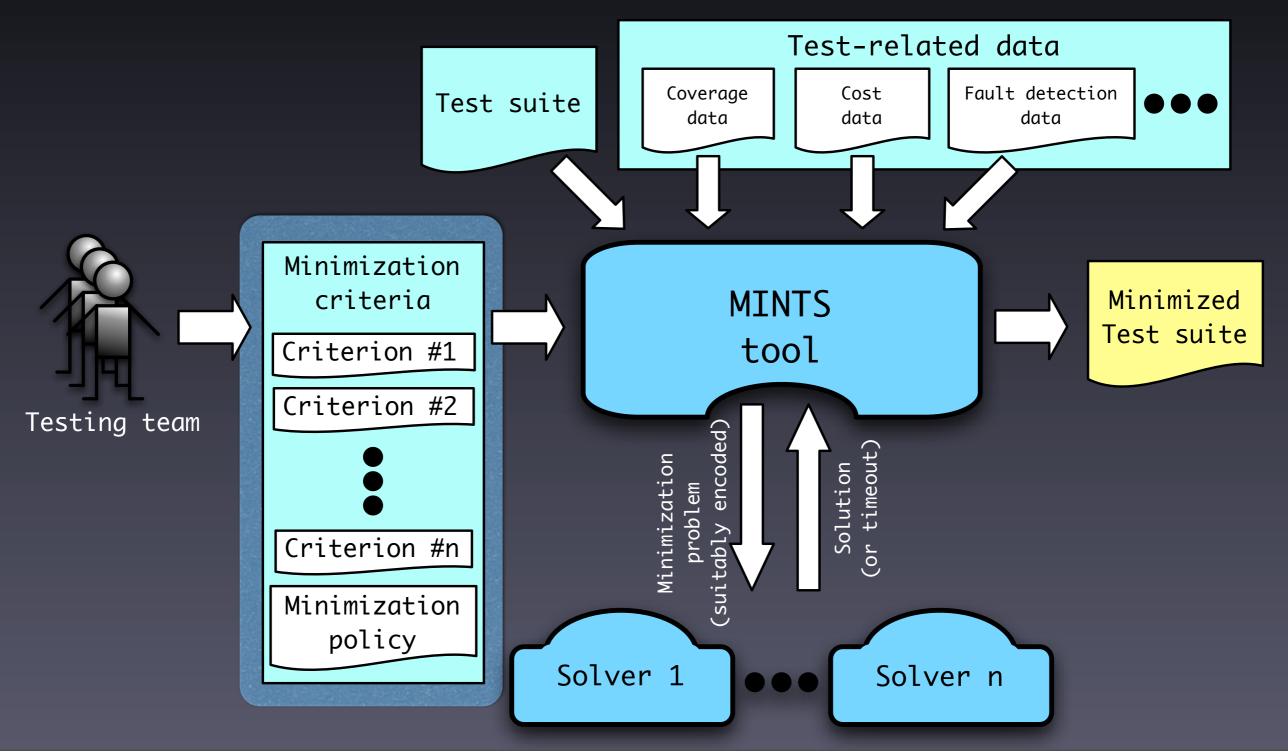
S2

S3

<u>C2 – minimize time to run</u>

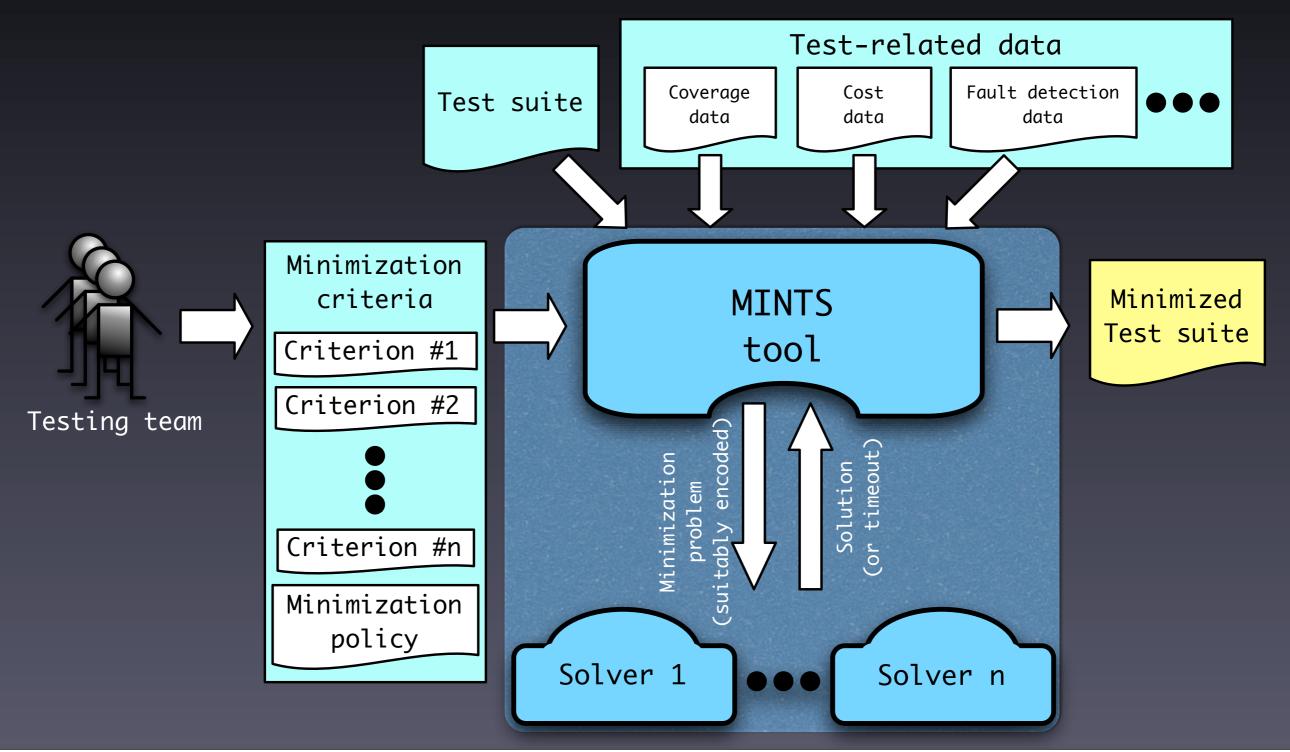
C3 – minimize setup effort

C4 - maximize fault detection


- Priorities indicate order of processing
- Section Example: C3 \Rightarrow 1, C2 \Rightarrow 2, C4 \Rightarrow 3: S1 \subseteq 2^T = min setup effort S2 \subseteq S1 = min testing time S3 \subseteq S2 = max fault detection

Hybrid

Minimization Policy


- Defines how to combine different objectives
- Weighted
- Prioritized
- Hybrid
 - Testers cluster objectives into groups and
 - assign weights to objects within group
 - assign priorities to groups

Overview of MINTS

Friday, May 22, 2009

Overview of MINTS

Friday, May 22, 2009

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
F. detection	8	4	10	2

 $\overset{\circ}{=}$ Minimized test suite MT={o_i}, 1 \le i \le |T|, o_i=1 iff $t_i \in MT$

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
F. detection	8	4	10	2

Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sector and a data (types 1...) dall={di,j}, 1≤i≤InI,1≤j≤ITI

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
F. detection	8	4	10	2

Minimized test suite MT= $\{o_i\}$, $1 \le i \le |T|$, $o_i=1$ iff $t_i \in MT$

Sest-related data (types 1...n) dall={di,j}, 1≤i≤InI,1≤j≤ITI

^{Section} Test-related data (type x) d_x={d_{x,j}}, 1≤j≤|T|

	t1	t2	t3	t4
stmt1	1		1	
stmt2	1	1		
stmt3			1	1
Time to run	22	4	16	2
Setup effort	3	0	11	9
F. detection	8	4	10	2

Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sector and a state of the sector of the

Image Set Test-related data (type x) d_x={d_{x,j}}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..ITI dx,j0j ⊕ const

$\oplus = <, <=, =, >=, or >$					
	t1	t2	t3	t4	
stmt1	1		1		
stmt2	1	1			
stmt3			1	1	
Time to run	22	4	16	2	
Setup effort	3	0	11	9	
F. detection	8	4	10	2	

 \Im Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sest-related data (types 1...n) dail={di,j}, 1≤i≤InI,1≤j≤ITI

Sest-related data (type x) d_x={d_{x,j}}, 1≤j≤|T|

Absolute criteria (type x): ∑j=1..ITI dx,j0j ⊕ const

For example:

Criterion #1: $\sum_{j=1..4} d_{1,j}$ $o_j = o_1 + o_3 \ge 1$ (maintain $\sum_{j=1..4} d_{2,j}$ $o_j = o_1 + o_2 \ge 1$ coverage) $\sum_{j=1..4} d_{3,j}$ $o_j = o_3 + o_4 \ge 1$

⊕ = <, <=, =, >=, or >					
	t1	t2	t3	t4	
stmt1	1		1		
stmt2	1	1			
stmt3			1	1	
Time to run	22	4	16	2	
Setup effort	3	0	11	9	
F. detection	8	4	10	2	

Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sector and a state of the sector of the

- ^{Segment data (type x) d_x={d_{x,j}}, 1≤j≤|T|}
- ^{Second} Absolute criteria (type x): Σ_{j=1..ITI} d_{x,j}o_j ⊕ const

$\oplus = <, <=, =, >=, or >$					
	t1	t2	t3	t4	
stmt1	1		1		
stmt2	1	1			
stmt3			1	1	
Time to run	22	4	16	2	
Setup effort	3	0	11	9	
F. detection	8	4	10	2	

[&] Minimized test suite MT={o_i}, 1 \leq i \leq ITI, o_i=1 iff t_i \in MT

^{Solution} Test-related data (types 1...n) dail={di,j}, 1≤i≤InI,1≤j≤ITI

^{Section} Test-related data (type x) d_x={d_{x,j}}, 1≤j≤|T|

^δAbsolute criteria (type x): Σ_{j=1..ITI} d_{x,j}o_j ⊕ const

For example:

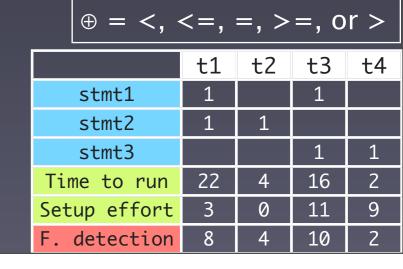
Criterion #2 (minimize time to run): min $\sum_{j=1..4} \text{norm}(d_{3,j})o_j = .5o_1 + .1o_2 + .36o_3 + .04o_4$

$\oplus = <, <=, =, >=, or >$					
	t1	t2	t3	t4	
stmt1	1		1		
stmt2	1	1			
stmt3			1	1	
Time to run	22	4	16	2	
Setup effort	3	0	11	9	
F. detection	8	4	10	2	

Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sest-related data (types 1...n) dail={di,j}, 1≤i≤InI,1≤j≤ITI

- Test-related data (type x) $d_x = \{d_{x,j}\}, 1 \le j \le |T|$
- ^{Second} Absolute criteria (type x): Σ_{j=1..ITI} d_{x,j}o_j ⊕ const


Minimization policies

\oplus = <, <=, =, >=, or >					
	t1	t2	t3	t4	
stmt1	1		1		
stmt2	1	1			
stmt3			1	1	
Time to run	22	4	16	2	
Setup effort	3	0	11	9	
F. detection	8	4	10	2	

Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sest-related data (types 1...n) dail={di,j}, 1≤i≤InI,1≤j≤ITI

- Image Set Test-related data (type x) d_x={d_{x,j}}, 1≤j≤|T|
- ^δAbsolute criteria (type x): Σ_{j=1..ITI} d_{x,j}o_j ⊕ const
- Minimization policies
 - Seighted: {α_j}, 1≤j≤#relative criteria

Minimized test suite MT={o_i}, 1≤i≤|T|, o_i=1 iff t_i∈MT

Sest-related data (types 1...n) dail={di,j}, 1≤i≤InI,1≤j≤ITI

- Test-related data (type x) $d_x = \{d_{x,j}\}, 1 \le j \le |T|$
- ^δAbsolute criteria (type x): Σ_{j=1..ITI} d_{x,j}o_j ⊕ const
- Minimization policies
 - [●] Weighted: {α_j}, 1≤j≤#relative criteria
 - Prioritized: criterion \Rightarrow integer

$\oplus = <, <=, =, >=, or >$						
t1 t2 t3 t4						
stmt1	1		1			
stmt2	1	1				
stmt3			1	1		
Time to run	22	4	16	2		
Setup effort	3	0	11	9		
F. detection	8	4	10	2		

Given

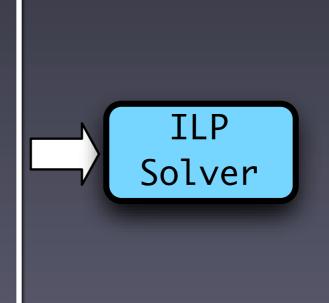
- $\overset{\scriptscriptstyle {f s}}{=}$ n relative criteria involving test data d_{x1}, ..., d_{xn}
- m absolute criteria involving test data dy1, ..., dym
- $\overset{\circ}{=}$ A weighted policy with weights α_1 , ..., α_n

Given

- ullet n relative criteria involving test data d_{x1}, ..., d_{xn}
- m absolute criteria involving test data dy1, ..., dym
- A weighted policy with weights α_1 , ..., α_n MINTS encode the minimization problem as

```
minimize
\sum_{i=1...n} \alpha_i \sum_{j=1...|II|} norm(d_{xi,j})o_j
under the constraints
\sum_{j=1...|II|} d_{y1,j} o_j \oplus const_1
....
\sum_{j=1...|II|} d_{y1,j} o_j \oplus const_1
```

Given


 ${}^{\$}$ n relative criteria involving test data d_{x1}, ..., d_{xn}

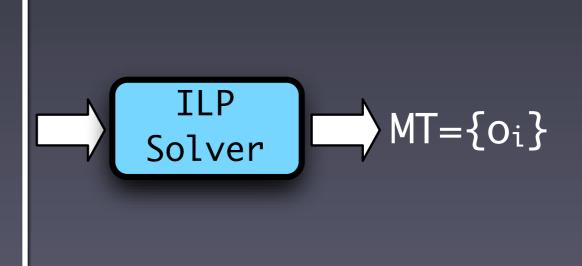
m absolute criteria involving test data dy1, ..., dym

 $\overset{\scriptscriptstyle {f \&}}{=}$ A weighted policy with weights $\alpha_1,$..., α_n

MINTS encode the minimization problem as

```
\begin{array}{l} \mbox{minimize} \\ \Sigma_{i=1..n} & \alpha_i \sum_{j=1..|T|} norm(d_{xi,j})o_j \\ \mbox{under the constraints} \\ \Sigma_{j=1..|T|} & d_{y1,j} & o_j \oplus const_1 \\ \hdots \\ \Sigma_{j=1..|T|} & d_{y1,j} & o_j \oplus const_1 \\ \end{array}
```


Given


 ullet n relative criteria involving test data d_{x1}, \ldots, d_{xn}

m absolute criteria involving test data dy1, ..., dym

 $\overset{\circ}{\circ}$ A weighted policy with weights $\alpha_1, \ldots, \alpha_n$

MINTS encode the minimization problem as

```
\begin{array}{l} \mbox{minimize} \\ \Sigma_{i=1..n} & \alpha_i \sum_{j=1..|T|} norm(d_{xi,j}) o_j \\ \mbox{under the constraints} \\ \Sigma_{j=1..|T|} & d_{y1,j} & o_j \oplus const_1 \\ \hdots \\ \Sigma_{j=1..|T|} & d_{y1,j} & o_j \oplus const_1 \end{array}
```


Given

- $\overset{\$}{=}$ n relative criteria involving test data d_{x1}, ..., d_{xn}
- m absolute criteria involving test data dy1, ..., dym
- $\overset{\circ}{=}$ A weighted policy with weights $\alpha_1, \ldots, \alpha_n$

MINTS encode the minimization problem as

Minimize

 $0.1(.50_1+.10_2+.360_3+.040_4) + 0.8(.130_1+.480_3+.390_4) - 0.1(.30_1+.170_2+.420_3+.080_4)$

Under the constraints $O_1 + O_3 \ge 1$, $O_1 + O_2 \ge 1$, $O_3 + O_4 \ge 1$

$$\Rightarrow$$
 MT = {0,1,1,0}

Friday, May 22, 2009

Outline

SIntroduction

@Our technique

Sempirical evaluation
Sempirical evaluation
Sempirical evaluation

Outline

Introduction Our technique

Empirical evaluation

Conclusion and future work

Empirical Evaluation

- Goal: assess usefulness and practicality of the approach
- RQ1: How often can MINTS find an optimal solution "quickly"?
- RQ2: How does MINTS compare with a heuristic approach?

RQ3: How does the use of a specific solver affect MINTS's performance?

Empirical Evaluation

Goal: assess usefulness and practicality of the approach

RQ1: How often can MINTS find an optimal solution "quickly"?

RQ2: How does MINTS compare with a heuristic approach?

RQ3: How does the use of a specific solver affect MINTS's performance?

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Subjects:

Subject	LOC	COV	#Test Cases	#Versions
tcas	173	72	1608	5
schedule2	307	146	2700	5
tot_info	406	136	1052	5
schedule	412	166	2650	5
replace	562	263	5542	5
print_tokens	563	194	4130	5
print_tokens2	570	197	4115	5
flex	12,421	567	548	5
LogicBlox	570,595	29204	393	5
Eclipse	1,892,226	35903	3621	5

Solvers:

Four SAT-based pseudo-Boolean and two pure ILP solvers

Test-related data

- Code coverage (gcov, cobertura)
- Running time (UNIX's time utility)
- Fault-detection ability (#faults detected in previous version)

Test-related data

- Code coverage (gcov, cobertura)
- Running time (UNIX's time utility)
- Fault-detection ability (#faults detected in previous version)

Minimization criteria

- One absolute: maintain statement coverage
- Three relatives: min size test suite, min execution time, max fault-detection capability

Test-related data

- Code coverage (gcov, cobertura)
- Running time (UNIX's time utility)
- Fault-detection ability (#faults detected in previous version)

Minimization criteria

- One absolute: maintain statement coverage
- Three relatives: min size test suite, min execution time, max fault-detection capability

Minimization policies

- Seven weighted: same weight; 0.6, 0.3, 0.1 (all combinations)
- One prioritized: (1) min size test suite, (2) min execution time, (3) max fault-detection capability

RQ1: How often can MINTS find an optimal solution quickly? (setup)

Test-related data

- Code coverage (gcov, cobertura)
- Running time (UNIX's time utility)
- Fault-detection ability (#faults detected in previous version)

Minimization criteria

- One absolute: maintain statement coverage
- Three relatives: min size test suite, min execution time, max fault-detection capability

Minimization policies

- Seven weighted: same weight; 0.6, 0.3, 0.1 (all combinations)
- One prioritized: (1) min size test suite, (2) min execution time, (3) max fault-detection capability

Overall, 400 minimization problems covering a wide spectrum

MINTS encoded each problem, submitted it to all solvers, and measured the time required to get the first solution

MINTS encoded each problem, submitted it to all solvers, and measured the time required to get the first solution

Tim	ne (sec)											
32.5 -												
30 -												-
27.5 -											_	
25 -												-
22.5 -											_	-
20 -												-
17.5 -											_	-
15 -											_	-
12.5 -											_	╞
10 -												
7.5 -												
5 -							}					
2.5 -								and-ain-an-an-ain-				
			•				<u>Dh.M.M.M.M.M.</u>					
U	tcas	tot_info	LogicBlox	schedule2	schedule	print_tok	print_tok2	replace	flex	Ecl	ipse	

Ordered by complexity indicator – size of the subject x # test cases

Friday, May 22, 2009

MINTS encoded each problem, submitted it to all solvers, and measured the time required to get the first solution

Time	$\overset{\space}{\space}$ MINTS always found an optimal solution		
32.5	All solutions found within 40 sec		
30 —			
27.5 —	Less then 10 seconds for the majority of the most		
25 —	complex minimization problems		
22.5			
20 —	🖗 In most cases, less than two sec		_
17.5			
15 —			
12.5 —			
10 —		1	
7.5			
5 —			
2.5			
0			
	tcas tot_info LogicBlox schedule2 schedule print_tok print_tok2 replace flex	c Ecli	pse

Ordered by complexity indicator – size of the subject x # test cases

Friday, May 22, 2009

MINTS encoded each problem, submitted it to all solvers, and measured the time required to get the first solution

		-	
Time	e 🖉 мінтs always found an optimal solution		
32.5 30 -	All solutions found within 40 sec		
27.5 —	Less then 10 seconds for the majority of the most		
25 — 22.5 —	complex minimization problems		
20 -	🗳 In most cases, less than two sec		
17.5 + 15 +	Clear correlation between complexity and time required		
12.5	🗳 Almost linear; promising wrt scalability		
	A Almose Ellieur, promeseng mie sealabelley		
10 — 7.5 —			
5 -			IIIIm
2.5 -		un and - Marine /	
2.5			
0 —	tcas tot_info LogicBlox schedule2 schedule print_tok print_tok2 replace flex	k Eclip	ose

Ordered by complexity indicator – size of the subject x # test cases

Friday, May 22, 2009

Process

- 1. Single criterion: maintain statement coverage
- 2. Implemented HGS [HGS93] well known, simple
- 3. Measured
 - 1. time to solve minimization problems
 - 2. size of resulting test suite

Process

- 1. Single criterion: maintain statement coverage
- 2. Implemented HGS [HGS93] well known, simple
- 3. Measured
 - 1. time to solve minimization problems
 - 2. size of resulting test suite

Results

- Both found solutions to all problems in a few seconds
- MINTS sometimes faster than HGS
- Minimized test suites of the same size for the Siemens programs and flex, of similar size for LogicBlox, and fairly different for Eclipse

Eclipse version	Original T's size	HGS	MINTS	Difference
3.0.1	2460	656	418	238 (36%)
3.0.2	2467	651	423	228 (35%)
3.1	3621	851	553	298 (35%)
3.1.1	3681	833	532	301 (36%)
3.1.2	3681	656	406	250 (38%)

Results

- Both found solutions to all problems in a few seconds
- MINTS sometimes faster than HGS
- Minimized test suites of the same size for the Siemens programs and flex, of similar size for LogicBlox, and fairly different for Eclipse

Outline

Introduction Our technique

Empirical evaluation

Conclusion and future work

Outline

Introduction Our technique Empirical evaluation Conclusion and future work

Conclusion and Future Work

Conclusion and Future Work

Summary

- MINTS is a technique and tool for test suite minimization that
 - Allows for specifying a wide range of multicriteria minimization problems
 - Computes (when successful) optimal solutions
- Empirical results show usefulness and applicability of the approach

Conclusion and Future Work

Summary

- MINTS is a technique and tool for test suite minimization that
 - Allows for specifying a wide range of multicriteria minimization problems
 - Computes (when successful) optimal solutions
- Empirical results show usefulness and applicability of the approach

Future work

- Additional experimentation
- Study solvers' performance to go beyond the black box
- Extension of MINTS to include prioritization

Thank You!